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Construction of the boundary layer by the method of variation is used for investi- 
gating the principle of selecting the unique solution for a perfectly plastic me- 
dium by transition to it from a viscoplastic medium with the viscosity coefficient 

tending to zero. 

Let an infinitely long cylinder move along its axis in a viscoplastic medium at con- 
stant velocity. The velocity field of particles of a viscoplastic medium induced by the 
cylinder motion in a system of coordinates I, y, z (with the cylinder axis along the 2 - 
coordinate and its cross section o lying in sy-plane) is of the form u = (0, 0, u (5, 
y)). It was shown in [1] that u (2, y) minimizes functional 

where y and z0 are, respectively, the viscosity coefficient and the yield point of the 
medium and F is the longitudinal force moving the cylinder. The velocity of the cy- 
linder can be determined when force F is specified. It is u (5, y) over &e. If the cy- 
linder velocity is u,,, then u (2, y) minimizes functional 

I2 (20) = 1 [$I VWI” $- z, 1 VW I]dlu, WI30 = uo (1) 
Rz\o 

and the force necessary for producing such motion is determined by formula 

u,F=r,(u)$ 5 -!+I% 
R’/o 
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Below we consider the particular case in which the cylinder velocity is specified. 

It was shown in [l] that in the case of convex region o the motion of the cylinder is 
possible if F > r. mas ao. 

The limit case of viscoplastic medium is a perfectly plastic medium for which n = 0. 
In this case stationary motion is only possible for F = r0 mcs ao. The velocity distri- 
bution of stationary motion is then 

u (r, y)= 
1 

a07 (x1 Y) E &I) 

0,: x, y) E R?(I) 

The motion of a system of cylinders with parallel axes in a perfectly plastic medium 
was considered in [Z]. We shall illustrate the results obtained there on the example of 

two cylinders of cross sections o1 and oZ (see Fig. 1). The pattern of velocity field of 

such system is determined by the relative position of o1 and 02. If mes 8 (oll_J 02)< 
mes 8 (alU s1 U oJ, the cylinders move independently from each other at velocities 
Q and u%, while the medium is stationary. Conversely, if mes a (0rU 02) > mes f3 

(wl U 8 U 0%) ,region o1 IJ Q LJ o2 moves at constant verocitiy while the remaining 

part of the medium is stationary. In the limit case, when mes 8 (oi UoZ) = mes i) 
(01~ IJ Q U Q.J, function u (x, Y) is of the form 

Thus various configurations of the velocity field are possible here. Note that in the 
case of motion of the same system of cylinders in a viscoplastic medium the velocity 

configuration is uniquely determined. Hence the natural question: which of the confi- 

gurations of the velocity field is the limit one for p -) 0. To answer that question it is 
necessary to analyze the properties of velocity fields in the above problem for a visco- 

plastic medium whose viscosity is low. It is shown below that the choice of the limit configu- 
ration of the velocity field is determined by energy dissipation in the boundary layer 
which develops in the neighborhood of the discontinuity line of function I( (r, Y) in for- 

mula (2). The scheme for the construction of the velocity field in the boundary layer 
proposed below is based on the asymptotic method of variation. Various examples ofthe 
use of that method appear in [3 - 51. 

Let us now consider functional (1) and pass in it to dimensionless variables. We nor- 
malize z and y with respect to length L of the contour &I and the velocity field 
with respect to ur,. 1, then becomes 

(3) 

E = p&)lz,L (( i (4) 

The main object of this work is to determine with specific accuracy the approximate 
function which would minimize (3).Thus,if uE is a function which minimizes (3), then 
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where the expansion is asymptotic and function fi (z) is independent of the contour 

geometry. We call function z&Sk an approximation of order k, if 

It can be shown p] that 

c 1 Vr&~i - (k- 1. 3, . * .) (6) 
R:, w 

The inequality (6) represents an estimate of the difference between the true velocity 
field and its approximation. 

We shall call the first order approximation of [A, the boundary layer. Note that, when 

lim,,0 (g, (E) / E) #= 0, the boundary layer does not, generaily speaking, give any 
qualitative idea of the behavior of uE. Hence the investigation of ?E, requires the con- 
sideration of higher order approximations. 

Let us describe the procedure of approximation derivation. We point out that the most 

important step is the estimation of the lower limit of functional (3). We pass in func- 

tional (3) to orthogonal curvilinear coordinates (s, n) such that the form of o is map- 
ped into a half-band 0 -< s < ff and R. >, 0; ta = 0 defines the boundary of o and 

Obviously I, >, I,* and, consequently, inf I, > inf I%*. Let IQ* minimize functional 

Iz*. Then for inE I2 we have the upper and lower bound estimate 

1% (u,*) > inf 1, (u) >, I,* (UC*) (7) 

Note that, if lines of level of function’ ue and lines orthogonal to these are taken as 
the coordinates, the inequalities (7) become equalities. Hence it is possible to propose 
the following method of approximation derivation, We determine funcrional I,* in 
any arbitrary system of coordinates and find for it function ,ue*. We then pass to the 
new system of coordinates defined by level lines of Us* and lines orthogonal to it. We 

again determine functional I, * in the new system, find for it function uE* , and then 
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repeat preceding constructions. It is obvious that the accuracy of (7) which determines 

the order of approximation, increases with each successive step. It is important to note 
that the determination of UK necessitates the solution of a differential equation in par- 
tial derivatives, while the determination of u,* requires the solution of an ordinary dif- 

ferential equation. The construction described above can be obtained also in the case 
of nonorthogonal coordinates. However, it should be borne in mind that the accuracy of 
approximation depends on the extent of nonorthogonality of coordinates. 

One of the possible system of coordinates for the considered here problem is the fol- 
lowing : 

2 = x(s) + Y' (s)v y = y(s) - Ic’ (s) n (8) 

where z = z (s) and y I= y (s) constitute the natural equation of contour 8~. We 
assume that functions z (s) and y (a) are fairly smooth and that the contour curvature 
k (s) is strictly positive. The equation for 1s in variables (8) is of the form 

Function u,* ’ 1s determined by formula 

n k (s) (7 (4 - 4 dt 

Y(S) 

’ UC* = 1 - s F (1 + k (s) 4 
E = k (s) s T (8) - t 

‘1 + k (s) t) 
& 

(9) 
0 0 

where y (s) is determined by the equation shown in parentheses. Formula (9) makes it 
possible to derive function 

Function v,* is derived from u,* by expanding it into a Taylor series. A direct check 
shows that 

I,* (US*) - Is” (UC”) = 0 (a) 

A further direct check shows that 

(II) 

121 (UC*) - I,* (UC*) = 0 (E) (12) 

Note that the righrhand parts of equalities (11) and (12) can be readily estimated with 

the use of input data of the problem. From (11),(12) and (7) we obtain 

inf I2 (w) = 1s (v,*) + 0 (E) = zoLu, 1 + *1/E\ I/T& + O(E)) (13) 
Hermew iJ 
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0 
In above formulas Q* is the boundary layer for u, and g, ( E) = t?. The above ana- 
lysis applies locally, i.e. if part r of the contour and region wobounded by 1’ and 

normals to it at its extreme points (see Fig. 2) is considered, then 

inf I, (20) = z. mes lh, 1 +- - 
w 

2 $” V-E { -f&ds + 0 (8)) (14) 

PUO 
I? 

e= 
z0 mes l? 

where w [r = ‘i and w tends to vanish for a point in o tending to infinity along the 

normal to r. Here and in formula (13) we have introduced the dimensionless variable 

0 < s < 1. let us rewrite formula (14) in the original variables. We have 

al/Z- - 
inf I2 (w) = To me.3 2.Q + 3 ~~~~~~~ n/r (me.9 r) + 0 (p) (15) 
1” 

mes r 

M(mesl?)= \ Jf/Fcods 
;, 

Estimate (6) implies that 

s 
1 Vu, - Vve* I2 do < cc 

Rz\o 
(16) 

Generally speaking, the integral (16) may not tend to zero when E --+ 0. Consequently, 
for the determination of function zzE it is necessary to compute approximations of higher 
orders. 

Let us use function &* for constructing the coordinate system. We take function 
w,* = 1 - nl/(% / e) and investigate the lines of its level. The set of lines ortho- 

gonal to these lines of level cannot be defined by simple formulas. Because of this we 
restrict our requirements to the stipulation that the coordinate lines must be orthogonal 

to within n2. The above reasoning leads to the following system of coordinates: 

J: = IL: (4 + Y’ (4 & + 5’ (4 k’ (s) n” 

4k2 (s) (17) 

Y = Y (s) - x’(s) I/k% 4- Y’ (4 
k’ (s) n2 

4kz(s) 

Expressing I, in the curvilinear coordinates (17), we obtain 

For the functional (18) 12* is of the form 

lcsr 

12* = z,Lu 0 

00 
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It is seen that I, > Is*, hence inf I, > inf I,*. Function uI* which minimizes 
functional (19) is determined by formula 

Function y (s) is determined by equation 

a = H (y (4, 4 
where 

(21) 

c~a = ~2 (s, n) - Ta;; ;; ] A2 (s, n) II 
A&n)= &+n+ k”k - k-2 

4kS vii- n2 + gn3 

A2 =&[l+2nI/iE+(k-~+$+~+ 

“k”k - Sk’s d 
4k2 v/k 

B2 = & (+ + g n2) 

c = -&5+ + k(S)’ nq 
To determine y (s) the integrand in (21) must be expanded into Taylor series in powers 

of n’. The accuracy of y (s) which is required for determining expansion (5) is 

y (s) = 1/z + ER + q&M + e2 N + 0 ( e22/q 

The coefficients R, M and N are expressed in terms of k (s) and its derivatives by 

using Eq. (21). For instance, 

1 
Formulas for M and N are not presented owing to their awkwardness. The obtained 

function u,* (20) is substituted into functionals (18) and (19). Using the expansion of 
u,* in powers of n and carrying out direct calculations, we find that functionals (18) 
and (19) differ by the order of E 2. Thus we obtain the following expansion: 

inf I2 = zOLuO 1 + - 2j”l/+scls ++&k -&]ds- (22) 

0 0 

Expansion (22) shows that the obtained function us* is a third order approximation of 
function uE, and estimate (6) is of the form 
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Let us revert to the problem of separating out the unique solution of the problem of 

motion of cylinders in a perfectly plastic medium, using the device of vanishing visco- 

sity, Let us assume that o1 and w2 (Fig, 1) are convex regions whose boundaries have a 

positive curvature at all of their points, and that 

mes dw, + mes do, = mes d (q /J co2 U Q) 

Let us further assume that the forces acting on the cylinders depend on l_r in such a way 

that the velocity of the cylinder of cross section wi is equal ui (i = 1,2), where ZZ~ is 
the same as that appearing in formula (2). Let u1 > up. Obviously Fi + z. mes oi , 
when p -+ 0 (i = 1,s). If regions o,and 02 are identical and ur = u2, then F, = 
F,. The solution of the related problem for a perfectly plastic medium is provided by 

formula (2) for any value of u0 within the limits 0 < u0 < u2. It will be shown that 
for /.L -+ 0 solutions of viscoplastic problems converge to the solution of the perfectly 

plastic problem for u. = us. 

Let us assume that the contrary is true. Let there exist a sequence pi -+ 0 such that 
solutions of viscoplastic problems converge to the solution (2) for u,, < u2. Let us con- 
sider functional 

13 (20) = 1 ~~IVwI”~t~,IVwl~do--F,wla,,--s11iIDw~ 
n*\(~Uw~) 

and also, certain singularities of the structure of function up which minimizes 1s (w). 

It was shown in [l] that when a cylinder of cross section o moves in a viscoplastic me- 
dium under the action of force F , then the lengths of level lines uP = h of velocity 

distribution is defined by the equality 

? 
r, mesa(u~>h)dh<FFP--a) 

\ 
(23) 

h 
It follows from inequality (23) that function uPwhich minimises I,, has a level line 

UP = uo + P (PL) (P +- 0 when I_L --t 0) which separates the lines of level uP into 
two classes. Namely, for z+ < u. + p (p) the level lines uPare simply-connected 

and contain region o1 U 02; for up > u. -/- p (cl) the level lines uy are doubly-con- 
nectedand eachofits components contains the related region Oi (i = l,.Z). The boundary 

ofthe set of level uP = u. + p (p) = Uot* is shown in Fig. 3 by a continuous line. 

bet us consider regions T, through Ts (Fig. 4) by using these lines, Straight lines 

AA, and BB, are perpendicular to ao,, - lines CC, and DD, are perpendicular to 

13 ws. Furthermore 
A ,+ inf I, (w) > i inf I2 (wk, T,) (24) 

1 Wk 

Iz(‘O,Q)= ~[$Iv~12+toIvw~ 

A = F,ul ,~:a + J'2u2 laoz 
WllAPB = ul, W~[AQB =ul, W~JA,Q~~= UoEL, WQlCLD = u2 

w3 (C&Do = Uol", Q(csn = 112, %jAoCo = uo't W6 IBoLl, = uol'. 



Boundary layer in the problem of longitudinal motion of a cylinder 
In a vlscoplastlc medium 

641 

and w,, wp, w5 and w, tend to vanish, when a point in the related region tends to in- 

finity, 
Using formula (15), we obtain 

inf 1% (ZQ, T,) > zoulmes APB + - 2 I” l/p70~13 M (mes APB) + 0 (p) (25) 
WI 

inf .I2 (wz, T,) > to (ul - uop) mes A Q B + 
% 

TJfpFO(Ul - &)3”M (mes AQB) + 0 (p) 

inf Iz (w,, T3) > z. @a - not*) mes CLD + 
W3 

inf I2 (wp, T,) > TouZmes CSD + 7 
w4 

2 ~$fp~~u,~ M (mes CSD) + O(p) 

It is evident that the following relationships 

(26) 

are valid, Finally, from formulas (24) - (27) we obtain the following lower bound esti- 

21/S mate ’ A $ inf I3 > soul mes APB + 3 I/gu;hM (mes APB) + (26) 

z. (ul - z#) mes AQB + - uop)“,’ ~(rnesd~~) + 

z. (u2 - u,P) mes CLD -t q 1/I”z, (u2 - u,‘+)s!z M (mes CLD) + 

TOua mes CSD + al/z 
3 1/~uaQM (mes CSD) + 

zouoi*. mes AC + -rouo~ mes BP + 0 (p) 

To prove the impossibility of the inequality Q, < u2 it is sufficient to construct func- 

tion Z+ for which I, (vi*) + A is strictly smaller than the right-hand part of inequality 

(28). 
let us consider the boundary layer of region Oi. 
The level line up** = t12 in the boundary layer of w1 is shown in Fig. 5 by the dash 

line, Its velocity field is determined by formula (10). Let us construct function z+. We 
draw tangents common to the dash line and ao, (Fig. 6), These tangents determine 
points A’, C’, D’ and B’ . The straight lines A “A ’ and C”C’ are perpendicular to 
A’C’ and lines B”B’ and D”D’ are perpendicular to B’D’, Function vIL is equal to the 

corresponding values in the boundary layers in regions OS, w4 and oj. In 06 and 07 the 
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Fig. 1 

Fig. 3 

Fig. 5 

Fig. 2 

Fig. 4 

Fig. 6 

Fig. 7 
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lines of level uiA are parabolas, with V~ being a continuous function with piecewise-con- 
tinuous derivatives. Direct imputation will readily show that a set of parabolas such 

that 
1, (up, 06 U 07) = rou2 mes A’C’ + z,,z+. mes B'D' + 0 (djij 

exists in regions o6 and 07 

(29) 

Note that, if relationship (29) is to be satisfied, the width of regions 06 and 07 must 

be of the order of psi’* Thus uP determines a motion which is possible from the point of 

view of kinematics in which part of the medium moves at the cylinder velocity w2. 

Let us compute A + I, over function vP 

A + I, = 1, (u,,, 0s) + 1, (+, 04 U ~1 + 0 (fi) + zouz mes A’C’ + (30) 

r0u2 mes B'D' 

The ~lationship 
21/z 

I2 (u,, 123) = lc0u3 mes C’SD’ + 3 vrz U”;” ill (mcs C’SU) ;. 0 (iA) (31) 
is valid by virtue of (15). 

let us consider the second integral in (20). We draw at points A ’ and B’ (Fig. 6) 

normals to ao,(see Fig. 7). With the use of the form (10) of function uP we directly de- 

termine that 
1, f+ d’d“d”) = o (u’;), 1, (vi*, B’B”B”) = 0 (l/F) 

Hence the following formula 

Iz (v,, 04 U 03) = ZOUI mes APB1 + r. (~1 - u2) mes AlQBl -I- 
(32) 

is valid. From formulas (30) - (32) we obtain 

21/8 
A + Is (c+ = roul mes AIPBI +- 3 1/E u?M (mes APB]) + (33) 

TO (UI - ~3) mcs AQBI + v 1/z (~1 - us)'/'M (mes AQBI) + 

r0u2 mes C’SD’ I_ 
2u’z= 

- vfi ~lpitr (mes C’SP) + 3 

zouz mes A’C’ -+ zouz mes B'D' + 0 (r/r) 

From formulas (28) and (33) we have 

inf Is - f3 (a& = zouz (mes AIQBI + mes C'LD' - (34) 

mes A’C’ - me3 B’l)‘) j * VjYG (us - uo)*. p M (mes CLD) + 0 (f I!?) 

In determining the right-hand part of (34) we used the relationship A ’ -+ A, B' -+ B, 

C’ * C and D' ---f D when P 3 0. It can be readily shown that 

mes A,QB, + mes C'LD' - mesd’C’ - mes B'D' >, O(J$) (35) 

The inequality (35) follows from the relationship 

mesAQB+mesCLD=mesdC+mesBD 

and from the assumption that the curvature is positive at all points of &I, and ao,. 
Formulas (34) and (35) imply that 
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inf 13 - 13 (v,) > I 2 y” -r/lslz;(m-- ~0)‘~‘~ iCZ (mes CLD) + 0 (I/r) 

Inequaliry (3~;) shows that the assumption u,, < u, is incorrect. 
Thus the vanishing small viscosity selects from among the solutions of the perfectly 

plastic problem (2) that for which u0 = ZQ. 

The derived principle of selecting the solution for a perfectly plastic medium is based 

in the considered problem on the assumption of positive curvature of the boundary 8 0;. 

It is, however, apparent that this principle is also valid in the case of some relaxation 
of that assumption. 

We note in conclusion that the problem of selecting a stationary solution for a perfect- 

ly plastic medium was considered in [2] from a different point of view. Although the 

allowance for inertial properties of the medium in the considered problem also results 
in the separation of a unique solution, the latter radically differs from the derivedabove. 

In this case only the cylinders move, while the medium remains stationary. A com- 
parison of these two methods of selecting stationary solution shows that the separated 

solutions depend on the method of obtaining a strictly convex functional from the input 
one, taking into account that inertial and viscosity properties have different effects and 

that their combination may result in solutions of the intermediate kind, when passing to 
limit. 
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